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ABSTRACT

_> This paper presents a hierarchical approach to plan and schedule

production in a manufacturing environment that can be modeled as a two

stage process. A conceptual framework for this approach is describeq.

The specific mathematical models proposed for the various hierarchical

levels are discussed. The methodology is evaluated in an actual set-

ting. The performance of the hierarchical system is contrasted with

an MRP design. Encouraging results are reported. .. c..
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1. INTRODUCTION

The management of the production process involves complex choices

among a large number of alternatives. These choices have to be made by

trading off conflicting objectives in the presence of financial, techno-

logical, and marketing constraints. Since its early developments, operations

research found the field of production planning a most fruitful area of

application.

Initial operations research contributions to production planning tended

to address individual sub-problems. More recently, attention has been

focused on the design of integrative model-based approaches to support the

overall spectrum of production management decisions. Hierarchical planning

systems represent one methodology suggested to deal with the entirety of

production management issues. In a recent publication [1] the authors have

addressed the characteristics of those systems for single-stage production

processes. The logic of single-stage hierarchical planning systems will

not be presented here. For an extensive coverage of these subjects, the

reader is referred to [2],[6],[7]1.

The objective of this paper is to discuss extensions of hierarchical

production planning (HPP) systems to support two-stage production processes.

This is an important area of concern since many manufacturing environments

can be described in terms of two-stage processes. The most relevant of

such environments are those involving fabrication and assembly operations,

where activities have to be planned in a coordinated way. Figure 1.1

illustrates a simplified representation of a two-stage setting. A concept-

ual overview of a two-stage HPP system is given in Figure 1.2. The essence

of the approach can be summarized as follows:

- First, individual parts 
and finished products 

are grouped 
into

agrgtiatpn greaefnse rdcs
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Figure 1. 1: The Two-Stage Setting
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Figure 1.2: A Conceptual Overview of a Hierarchical Production
Planning System for a Fabrication and Assembly Process
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-Second, an aggregate model is used to schedule the corresponding

production quantities for those aggregate parts and finished products. The

model addresses this decision jointly, thus guaranteeing -he appropriate

coordination of the two-stage process.

- Third, the aggregate part production and finished product production

plans are disaggregated to determine the detailed schedules for individual

parts and finished products.

- Fourth, a reconciliation of possible differences at the detail

level is performed via part inventories.

We favor an aggregate allocation approach at the higher level of the

hierarchical system to avoid the massive data manipulation, computational

complexities, and forecasting inaccuracies that would be imposed by a

detailed allocation model at that level. Furthermore, we do not believe

that a detailed formulation is necessary to capture the essential trade-

of fs and constraints inherent in the production planning process at a

tactical level. Finally, the HPP approach allows for effective managerial

interaction at all levels of the decision making process, as explained in

[1].I

The overall hierarchical design can be viewed as an alternative to

Material Requirements Planning (NRP), the most widely used design philos-

ophy to deal with two-stage production planning issues (see [101,[121,[131).

However, some elements of the hierarchical framework can also be construct-

ively used to enhance an 14SF system.

In sections 2 and 3 we describe the characteristics of the proposed

HPP system. A brief description of MRP and computational results contrast-

ing HPP with MRP are prsented in section 4. Conclusions are given in

section 5.
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2. TWO-STAGE HIERARCHICAL PLANNING (HPP) - THE AGGREGATE PLANNING MODEL

The highest level of planning in the hierarchical approach determines

production schedules for aggregate parts and aggregate finished products

(see Figure 1.2). Thus, the first design decision to be made concerns the

way in which individual parts and finished products are to be aggregated.

The criterion for the aggregation of finished products follows quite

closely the one adopted for the single-stage hierarchical planning system

[1]. The aggregation used for finished products in the two-stage setting

is as follows:

Product Items: are end finished products delivered to customers.

Product Types: are groups of finished product items having similar direct

production costs (excluding labor), holding cost per unit per

period, productivities (number of units that can be produced per

unit of time), and seasonalities.

Product Families: are groups of finished product items sharing a major

setup cost and requiring an identical number of the same parts.

The aggregation criterion for parts recognizes only one level of

aggregation:

Part Items: are individual parts either required as a component to a

product item or having an independent demand as a service or

spare part.

Part Types: are groups of part items having similar direct production

costs, holding costs per part per period, and productivities.

Part items also share common fabrication facilities. For parts,

two levels of aggregation was sufficient as no two items shared

a setup cost.

This aggregation of finished products and parts is applicable

to many industrial settings encountered in practice and was inspired by a

4

"3 ... . . ".- _ !I II I I
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real-life situation that will be discussed in section 4. This framework

can be adjusted to fit several variants of the proposed aggregation structure

and should not be seen as a limitation of the hierarchical methodology to

be presented.

2.1 Aggregate Production Planning for Product Types and Part Types

The aggregate two-stage allocation model introduced here is formulated

as a linear program. We have chosen this representation because in the vast

majority of practical instances, production allocation decisions lend them-

selves quite naturally to be treated by linear programming. However, any

of the aggregate production models suggested in the literature ([5 1 and

[8]) could have been used as long as they provide an acceptable formulation

of the process being considered.

The Aggregate Two-Stage Linear Programming Model

Problem (P)

minimize E [ (h I + r + otO ) +t=1 I i=1 it it rt it ti

I (hktkt + rktRkt + OktOkt)

subject to Iit-I + mi(Rit + Oit + Iit = dit

1-1,2,...,I; t=1,2,....,T (2.1)

I
E R it (rm) t  t-1,2,....T
11

I

S0 < Corn) t  t,2, .... T

st it it "it I12..I ~,,.,

K
E Rt (rm)t  t1,2 ..... T

k=I

..... ....... ---.
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K

E 0 < (om)
k=1 kt t t=l,2,. ..

SSkt =< kt kt k-1,2,...,K; t=1,2 .... T

'kt-I + ;k Rkt + Okt) - ikt

I
E f m i(Rit+L + 0 i+L) k=1,2,...,K; t=1,2,...,T-L

i-l
(2.?)

Ris 1and >0
R it' lit' kt' 0 kt' kt >

t=l,2,.. . ,T.

The indices i, k, and t represent, respectively, product types, part types,

and timeperiods. The parameters hit , rt, ot, mi, dit, (rm)t, (om)t, ssit,

and osit denote, respectively, the cost of holding one unit of inventory of

product type i from period t to period t+l, the cost of one hour of regular

labor in period t, the cost of one hour of overtime in period t, the

productivity of product type i, the effective demand of units of product

type i in period t, the number of regular labor hours in period t, the

number of overtime hours in period t, the safety stock of product type i

in period t, and the overstock limit of product type i in period t. The

parameters with a "^" have the same meaning for part types.

The number of units of part type k required per unit of product type i

is represented by fik" This parameter is discussed later in this section.

The variables Rit, Oit , and Iit denote the number of hours of regular

labor time, the number of hours of overtime, and the number of units in

inventory for product type i in period t. The variables with a "^" have

the same meaning for part type k in period t. The fabrication lead time

of parts is denoted by L. The labor unit cost for part types has been



assumed to be a function of each part type, while the labor unit cost

for assembly, r t and o t are taken equal for all product types. These

assumptions do not cause a loss of generality in the results discussed

in the paper.

Effective demands for product types are computed by netting out

the available inventory of each item belonging to the product type.

Therefore, in our model formulation, I.i 0 for i12..,.For the

computation of effective demand the reader is referred to I1].

Problem (P) is solved with a rolling horizon of length T. At the

end of each time period, new info-:.iation becomes available and is used to

update the model. Only the results pertaining to the first L+1 periods

for product types, and the first period for part types are implemented.

Constraints (2.2) couple part type requirements and product type product-

ion. The other set of constraints involve either part types or product

types, but not both. The first L constraints in (2.1) are included in order

to take into consideration the revised forecasts made at the beginning of

each period. Although the corresponding parts are already being manufac-

tured, or have already been ordered, minor variations can be absorbed by

either expediting the part production or by having a supplier make a

special delivery.

To simplify the formulation of Problem (P), we have intentionally

omitted planned backorders, hiring and firing, lost sales, and subcontract-

ing. If needed, these can easily be incorporated.

A critical point in the two-stage model is the definition of the

parameters f ik* Theorem 2.1 below shows how those parameters are computed.

It also demonstrates that, under certain hypotheses, the definition adopted

implies the existence of a feasible disaggregatilon scheme.

Let j denote a generic product family of product type I., let n be a
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generic part in part type k, and define fik as a weighted average of the

fIjkn as:

i d jfj..

jcJ(i) nEN(k) j i.knftk Z j _d, .. ,; ~,,.,

J~a(i) i (2.3)

where J(i) is the set of indices of the product families in product type I,

N(k) is the set of indices of parts in part type k, dj is the annual demand

of family j, and fijkn is the number of units of part n required by each

unit of product family j. Note that fijkn is well defined since, by defi-

nition, the families in a product type require the same number of units

of the same parts.

It is important to realize that the parameter fik represents a weighted

average of the parts required by individual items. Thus the solution of

the aggregate Problem (P), does not assure the existence of feasible

disaggregation even with perfect forecasts. Fortunately, under mild

conditions feasibility can be achieved as is shown in the following t!"orem.

Theorem 2.1: Assume that a perfect forecast is available, the initial

inventory of every product family is equal to zero, and that Problem (P)

is solved Just once (i.e., it is not solved on a rolling horizon basis).

The first L constraints in (2.1) are deleted. Then, the initial inventory

of part type k plus the production scheduled by Problem (P) for this

part type up to period r is sufficient to satisfy the sum of the demands,

corresponding to the interval [1,T], of all parts in part type k for every

T, such that, I < T < T-L.

Proof: Denote mi (Rit+L + 0 it+L) by Xtt+L. The production of part type k

from periods I to T plus its initial inventory, for a generic T in the

Interval [,T-L] is:
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T T

I ko + Zmk kt + Okt) = IkT + = E fik Xit+L
t.1 t=l i.1

I kT + Ek (2.4)

T I

where Ek =  E E fikXit+L, and the first equality follows from (2.2).
t=l i=l

The sum of the demands of all parts, corresponding to the interval [1,T], in

part type k is:

I T
E E E E f ijnd jL=B k(2.5)

i=l t=l JEJ(i) nEN(k) ijkndjt+L k

where djt+L denotes the demand of product family j in period t+L. Recall

that, by assumption, the initial inventories of each finished product

family is zero.

We first show that E > Bk. Since all items ina given product type i

have the same seasonality it follows that the ratio of cumulative family

demands within a product type remains constant:

TE dj

t=1 jt+L d (2.6)T
E d" djt+L E d J

JCJ(i) t=l JEJ(i)

Hence, from (2.3) and (2.6),

T

E f djkndjt+L
f J J(i) nEN(k) t=l

ik T
E Z -d t+L

JEJ(i) t l

and

E Efdikdjt+L Z Z Ef ijknjt+L
jcJ(i) t-l JCJ(i) nEN(k) t=l

or, equivalently, since d it+L E djt+L we haveJcJ(i)

- 7 ---.. ... 1P .... ." ___ _ "___"__- _ _ _ _
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I T I T
E E fikd t+L E E E E fijkndjt+L . (2.7)

i=l t=l i-I jcJ(i) nCN(k) t=l

The aggregate Problem (P) implies that

T T

X it+L I d it+L (2.8)
t-1 t=l

Therefore, by substituting (2.8) in (. 7) we obtain

Ek  B k  (2.9)

Since I > 0, it follows by (2.4), (2.5), and (2.9) that

kT =

ko + E Zk~k Ek f d
Iko +  k (Rt + Okt) > E E fi knd t+L .

t- i=l JEJ(i) nEN(k) t=l

Despite the fact that Theorem 2.1 establishes feasibility conditions

for the case of no forecast error and a stationary horizon, our computational

experience indicates that good results are obtained even in the absence

of these conditions. There are two reasons to support this fact. First,

in our computational work, we have observed that the rolling production

schedules obtained are quite stable. Second, it can be shown that if

the initial inventories are nonzero, but the product families' initial

inventories are well balanced, i.e., if

IJo = d , for 11,2,... ,I and JEJ(i)E) I °  Z j

JCi) JEJ(i) (2.10)

then, Theorem 2.1 holds.

We conclude this section by pointing out that the setup costs have

been intentionally ignored in Problem (P). They are considered during the

disaggregation process. This procedure is acceptable whenever setup costs

are not a significant portion of total costs. When this is not the case,

/*
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a procedure similar to the one devised in (1] for adjusting the hier-

archical method for high setup costs can be developed.

-A
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3. TWO-STAGE HIERARCHICAL PLANNING SYSTEM - THE DISAGGREGATION PROCEDURE

The disaggregation of the solution of the aggregate Problem (P) is

performed in two steps. Initially, product family requirements over the

first L+l periods and part requirements for period 1 are determined. In

the second step, the production quantities for product items in period 1

are obtained by disaggregating the corresponding production quantities of the

product families to which they belong. Let Xit and Xkt denote, respectively,

mi(Rit + Oit) and ;A t + Okt).

Step 1: Product Families and Part Requirements

To determine the production quantities for product families and parts,

the following problem needs to be solved:

Problem (PD)

L+l I K
minimize E E E (sD / )+ Z (SD kl/nl)

t=l i=l JEJ(i,t) i it I k=l nN(kl)m

(3.1)
I

subject to E E f ntf <ai -s (3.2)
i=l j&J(i,t) iJkn It nt nt

k=l,...,K; ncN(k); t=l,...,L

I

Efi nQj-s < ai Q
i=l J gJ(i,L+l) ik IJ= n ~ Ll n

kfl,... ,K; nEN(k) (3.3)

Q it i=l, ,I; t=l... ,L+l (3.L)
J EJ(i,t) it

A

Qnl = Kid kl,.... ,K (1.5)
hEN(k,l)

bjt < Q < ub i1,....I; JcJ(i,t); t=l,...,L+l
it= t = it

(3.6)
A

b < Qnl < Ubnl kfl.... ,K; nEN(k,l) • (1.7)

ml =. • •l , l
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The setup cost of product family j is denoted by s The demand of

family j over the run-out time of the product type to which it belongs is

represented by D it. The run-out time is the number of time periods in which

the available inventory plus the production quantity X tminus the safety

stock of the product type is expected to last. The concept of run-out time

has been discussed in [1] and [61. The lower and upper bounds Zb jtand

ub itare defined as follows:

lb it= max (0, d it ai. it s it (3.8)

ub. it max (0, as it ai it (3.9)

where d it, ai1 t, and ss itare, respectively, the demand, the available

inventory, and the safety stock in period t. The variable Q.i denotes

the production quantity of family J in period t. The parameters and

variables with a " have the same meaning for parts instead of

product families. n'i includes the number of units of part n on order

or being fabricated that will become available in period t. J(i,t) Prd

N(k,t) are, respectively, the set of indices of families in product type i

and the set of indices of parts in part type k that have a strictly

positive lower bound in period t. These are the families and parts tt'at

are triggered in period t.

The objective function (3.1) assumes that the family run quantities

are proportional to the setup costs and to the annual demand for a given

family. This assumption, which is the basis of the economic order quantity

formulation, tends to minimize the average annual setup cost. Notice that

the demand terms in the objective function, D it and D kl cover a planning

horizon equal to the run-out time. This is consistant with the myopic

rules developed in (1]. Constraint (3.2) could have been omitted and the

productions corresponding to the lead time "frozen". However, we have
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chosen not to freeze the production over the horizon L since some corrections

can be accommodated in practice either by expediting production or by having

special deliveries made by suppliers. Problem (PD) has a convex objective

function with linear constraints. It has been solved by the Frank and Wolfe

algorithm 14].

Theorem 3.1 below shows that under certain conditions a disaggregation

problem, intimately related to Problem (PD), can be decomposed into contin-

uous convex knapsack subproblems of the same type as those that arise in

the single-stage hierarchical model developed in [1] and [2). The advantage

is that the knapsack problems can be solved by an efficient algorithm

reported in [3].

The lower and upper bounds (3.8) and (3.9) for t=2,...,L+l are a

function of the disaggregation procedures used in periods 1 to L, since

the available inventories are affected by those disaggregations. However,

because the rolling horizon production schedules tend to be quite stable,

it is possible to estimate the lower and upper bounds using the results

obtained from the disaggregation of the last aggregate schedule available.

We denote these estimates by kbejt and ubejt and rewrite (3.6) as

kbl I j S Ubj I= ..... I; JCJ(i,I) }(.)

1(3.6)'
tbeJt < QJt < ube i-l....I; JEJ(i,t);it it itt-2,. ..,L+l

Problem (PD) with (3.6)' instead of (3.6) is denoted by Problem (PDe).

Theorem 3.1: Assume that a perfect forecast is available for the first L+l

periods, and that the product families in each product type require the

same number of units of each part, i.e., f jkn - q kn for ,

JeJ(i), k=l,...,K, and ncN(k). Then Problem (PDe) can be decomposed in

[I(L+I)+k]T continuous convex knapsack problems.

-

.4 - -
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Proof: Due to the assumption of perfect forecasLs, safety stocks can be

deleted and constraints (3.2) and (3.4) become:

I I

fijknQ jt ikn it nt
i=l jEJ(it) i=l

k=l,...,K; ncN(k); t=l.... ,L

(3.10)

and
I I

Z f Q = q X <
i=l jEJ(i,L+l) ijkn jL+l i ikn iL+I 

< nL+l n k=l,... ,K; ncN(k)

(3.11)

where the first equalities in (3.10) and (3.11) follow from (3.4). The

terms in the left-hand sides of the inequalities in (3.10) and (3.11) are

known from the aggregate schedule obtained from Problem (P). Moreover,

I
aint+l = ai - . q iknxit t=,2 ... ,L

Hence, all terms in the right-hand-side of (3.10) and ainL+l are not depend-

ent on the method of disaggregation. Consequently, constraints (3.10) can

be deleted. Therefore, Problem (PDe) can be rewritten as:

Problem (PDe)

L+I I K
minimize E E (SD jt/Q jt) + E (skD k/Q n,)

t=1 i=1 jcJ(i,t) k=l neN(k,l)

I
subject to Z qiAnXiL+l < ainL+l + Qn k=l,... ,K; nEN(k)

i-1

Z Jt = it il'l ~ " '~
jCJ(i tO

°nI = X1 k-l,. .. ,K

ncN(k,l)

bjl QJ I Ubj 1. JiJ(l,l)
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it i t i ~ t=2. ,

Zb < < ub k1,. .. ,K; nEN(k,l)
nl = nl = ubm

Problem (PDe) can be decomposed in the following [I(L+l)+K] continuous

convex knapsack problems:

Problem (PK(i,l)]

For i=l,2,...,

minimize Z D /Q
je.J( ill) 11i jl

subject to Q = Xl
jCJ(i,l) jii

Lb 11  < Qj < ub j1  jcJ (i,l1)

Problem [PK(i,t)]

For i=l,2,...,l and t=2,. . .,L+l

subject to E Q it=Xi
j C.1(i,t it

kbit< jt< Ube JEJ(i,t)
= it

Problem EPD(k)]

For k=l,2,...,

minimize Ec~kl SkDkl/Qnl

subject to ZE&l Qn = 'ki

I
maximum -al Z q Q <i ubni 1 in iL+1 nL+I) < ml < ml

ncN(k,l).
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The assumption of perfect forecast during the first L+l periods allows

us to decompose the problem into a set of knapsack problems that can be

solved quite easily. Even if this assumption does not strictly hold, we

can expect that moderate forecast errors can be absorbed by appropriate

levels of safety stocks and the problem can still be decomposed without

severe departures from optimality.

Step 2: Product Item Requirements

The last production quantities to be determined are the number of units

of each product item to be assembled in the present period. That is, we

need to disaggregate the quantities Qjl obtained from either Problem (PD) or

from Problem [PK(i,l)]. The disaggregation is performed through the following

knapsack problem for each family j in J(i,l), ,

Problem [F(j,l)] Q- 1 + Z (aiv V SSV1 + avl s _S 2Il vtV(j) Zvl v

minimize Z V j ) v l1]

vtV(j) Z dV(j)

subject to EzV 1 = QjvV (j) z v

vb < z < ub vEV(j)
V1 vi = VI

The parameters d v, ai vl, ss vl b vl and ub V denote, respectively, the

demand, available inventory, safety stock, lower bound and upper bound of

product item v in time period I. V(J) is set of indices of the product

items in product family j. The lower and upper bounds b V1 and ub V are

computed in the same way as in (3.8) and (3.9). The objective function in

Problem [F(j,l)] attempts to equalize the run-out time of each item in family j

and the run-out time of family j. Problem [F(j,l)] is a continuous convex knap-

sack problem with bounded variables. An effective algorithm to solve it has

been provided in [3].

4 ______
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4. COMPUTATIONAL RESULTS - COMPARING HIERARCHICAL PRODUCTION PLANNING WITH

MATERIAL REQUIREMENTS PLNNING (MRP)

In this section we report the results of extensive computational

experiments conducted to assess the performance of the proposed two-stage

hierarchical planning system. Since MRP is so widely used to deal with

production planning and inventory control in multi-stage settings, we

have contrasted the two approaches.

4.1 The MRP Model Tested

The essential features of MRP are illustrated in Figure 4.1. Although

we will not attempt to present a comprehensive coverage of this subject,

it is important to emphasize the framework of MRP so as to facilitate a

proper comparison between that methodology and the HPP system.

First, MRP defines the production quantities for individual product

items through a planning horizon at least equal to the maximum lead time

of the parts needed for the assembly of finished products. This production

plan becomes the master schedule.

It is worth noting that in many MRP systems in use, the master schedule

is viewed as an external input. The lack of an appropriate support for

managers to generate a good master schedule has been cited as one of the

major weaknesses of MRP [12]. Extensive research is being undertaken to

address that weakness today.'

The master scheddle bf production item quantities is then exploded

to compute requirements for all the part items. When all the requirements

for a given part item have been consolidated, an individual production

schedule is developed for each item.

There are many alternative procedures for calculating the part item

production quantities. Ref. [12) reviews 10 such approaches.

4 _ __._
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Master Schedule -
Production

Quantities for
Product Items

Explosion to
Determine Demand

Requirements
for Part ItemsI

Production
Quantities for

Part Items

Determination of
Load Profiles

in Major
Fabrication CentersI

Load Profiles N

Figure 4.1: The Essence of MRP Computations

__ _ _ __ _ ___ _ _ _
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It is important to realize that at this step no effort has been made

to take into account the economics of point part production; in fact,

total aggregate parts scheduled for production might result in unacceptnbb,.

or infeasible work load fluctuations. To correct for these possibilities,

MRP calculates the work load profiles by major fabrication center. Tho e

profiles are examined by operating managers and, if undesirable patterns

are detected, changes are introduced either at the master schedule level,

or at the part item scheduling level.

When MRP is conceived within the framework just described, it is, in

essence, a simulation tool which allows managers to test some suggested

production programs and identify their consequences.

If we contrast MRP with the proposed HPP system, we can identify

several areas of fundamental differences. HPP determines a joint product

type-part type aggregate schedule. That schedule is both feasible and

attempts to optimize primary costs. Moreover, the fact that it is an

aggregate schedule clearly facilitates genuine understanding of Its implica-

tions. The IPP disaggregation process that leads to part item and finished

product item scheduling is focused only on the immediate relevant time

period. This avoids an excessive amount of data and computational work,

because long term consequences have already been accounted for at the

aggregate planning level.

Figure 4.2 depicts the way in which we modeled the MRP system for the

purpose of experimental comparison. Our primary concern was to implement

computational rules for MRP that could provide unbiased grounds for evalua-

tion. The master schedule was determined by disaggregating the solution

of an aggregate linear programaming model for product types for the full

planning horizon. The disaggregation procedure used was Equalization-of-

Run-Out Time. As discussed in [1], this disaggregation rule allows for

i , i l X
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Figure 4.2: "~The MVRP" method used for comparative purposes
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an effective and consistent detailed production schedule when the full

planning horizon is i:. olved.

After the individual product item quantities were exploded to deter-

mine part item requirements, the Silver-Meal algorithm was used to deter-

mine part item production schedules. As reported in Peterson and Silver

[1ll, that method performs quite effectively when compared with alternative

lot sizing methodologies.

The last element that we introduced in modeling HRP was the ability

to correct for unattractive or infeasible production schedules. The

consolidated production schedule for part items was examined and adjusted.

For the sake of brevity, we are referring to that system as "th MRP

system". The reader should recognize that it is not in the spirit of our

work to make definite comments on another methodology. This would have

been an impossible task since MP can be viewed as a broad approach to

production planning rather than a specific, well-defined methodology.

In the remaining part of this section we will present the product

structure used in the comparison, and the computational results comparing

HP? with the MRP system outlined above.

4.2 Product and Part Structure

The data used in the experiments were scaled-down from a pencil manu-

facturing company. This firm assembles a variety of pencils requiring a

number of distinct components which are shown in Table 4.1. Individual

pencils are the product items. Identical-sized pencils were grouped into

a single product type, requiring similar assembly times. Within a product

type, items sharing commoon setup costs and having the same inscriptions

were grouped into product families. Parts sharing common production faci-

lities were classified into part types. This resulted in three part types:
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Table 4.1: The Finished Product/Part Structure

The Product - Pencils

Variations - Sizes - Product Types
Insignias on the Side - Product Families

Colors- Items

The Parts - Wood
Lead
Erasers (not all pencils require this)

THE NUMBER OF PARTS REQUIRED PER UNITS OF FINISHED PRODUCT

PART PART

TYPE I TYPE 2 PART TYPE 3

FINISHED PRODUCTIPART WOOD ERASER LEAD I LEAD 2

PENCIL

Size 1 (Product Type 1)

Insignia 1 (Family 1) Color 1 1 1 1 0

Color 2 1 1 1 0

Insignia 2 (Family 2) Color 1 1 1 0 1

Color 2 1 1 0 1

Size 2 (Product Type 2)

Insignia 1 (Family 1) Color 1 1 1 1 0
Color 2 1 1 1 1

Insignia 2 (Family 2) Color 1 1 1 1 0

Color 2 1 1 1 0

Insignia 3 (Family 3) Color 1 1 0 0 1

Color 2 1 0 0 1

) _________~ 77 77 r
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wood, erasers, and lead (this last part type was composed of two part

items, lead I and lead 2).

In order to test the robustness of the HPP and MRP methodologies,

a number of critical parameters were selected to be varied within appro-

priate ranges. The parameters selected were: finished product capacity,

part capacity, forecast errors, seasonality of demands, finished product

setup costs, part setup costs, part holding costs, seasonality of finisheod

product demand, and overtime costs. Appendix 1 describes the details of

the values tested for each parameter and their corresponding measurements.

The total combinations of the values of the parameters tested results in

one hundred different runs.

4.3 Computational Results

We compared the performance of MRP and HPP, in terms of costs and

backorders. When total annual costs were used as a measure of performance,

93% of the tests favored hierarchical production planning. The maximum

cash advantage in these cases was 144%. In those tests favoring MRP, the

maximum cost advantage was 3%.

When total backorders as a percent of annual demand were used as the

measure of performance, 22% of the tests favored hierarchical production

planning, 5% of the tests favored MRP, and the remaining 73% resulted in

no backorders under either methodology. In the 5% of the tests favoring

MRP, the maximum difference in backorders was 2% of annual demand. In the

22% of the tests favoring hierarchical production planning, the maximum

difference was 8%. A suimmary of the differences in methods for all one

hundred tests simulated is illustrated in Figure 4.3.

For the purpose of a more complete comparison, we attempted to identify

distinguishing features of the tests which favored MRP and those which most
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THE PERCENTAGE DIFFERENCE IN TOTAL
COSTS OF THE TWO METHODOLOGIES

PERCENT DIFFERENCE NUMBER OF THE 100 TESTS IN THE INDICATED RANGES

IN COSTS 10 20 30

more than 15

8to 15

Favoring 4 to 8
HPP

2 to 4

0 to 2

Favoring 0 to 2
MRP 2 to 4

THE DIFFERENCE IN TOTAL BACKORDERS
AS A PERCENTAGE OF TOTAL ANNUAL DEMAND

NUMBER OF THE 100 TESTS IN THE INDICATED RANGESDIFFERENCE IN BACK-

ORDERS AS PERCENT
OF TOTAL DEMAND 5 10 15

more than 6

4 to 6

Favoring 2 to 1
HPP

1 to 2

0 to 1

Favoring 0 to 1

MRP I to 2

Figure 4.3: A Summary of the Results Comparing the Two-Stage Hierarchical
Model with MRP
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strongly favored the hierarchical approach.

Of the seven tests which favored MRP in terms of costs, none favored

MRP in terms of backorders. In two tests, the !TP approach had higher

backorders than the hierarchical approach. Of the remaining five tests,

two had exceedingly high part capacity, zero forecast error, and very high

part-setup costs. The remaining three tests which favored M4RP all did so

by small amounts and all had medium forecast errors with a positive bias,

very high part-setup costs, and high part capacity. This indicates that

the MRP approach outperforms HPP in terms of costs only if 1) part capacity

is unlimited and forecast error is low, or (2) if part capacity is loose,

and finished product forecasts are always high and part setup costs are

steep.

The five tests that favored MRP in terms of backorders strongly

favored hierarchical production planning in terms of cost. The average

difference in total annual cost was 68%. Simultaneously, they all had

high seasonality, low finished product capacity, very high part setup costs,

and medium or high part capacity. This indicates that if seasonality is

high, capacity relatively tight, part setup costs very high, and back-

orders very costly, the MRP approach is preferable to HPP.

In examining the 11 tests in which the total costs associated with the

HPP method were at least 15% smaller than those associated with M~RP, no

overall conclusions regarding point characteristics can be drawn. It is

worth noting that none of the 11 tests had either very high part capacity

or very strong positive biases in the forecasts.

In the two cases in which the backorders associated with NEP were

greater than the backorders associated with HPP by more than 6% of annual

demand, part capacity was low, forecast errors were unbiased, and season-

ality was high.
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In general, when parts are fabricated internally, the HPP approach

appears superior to the MRP method of planning in all but the very unusual

cases. This finding is further supported by comparing these two approaches

with the Wilcoxon Statistic [9). This test indicates that the probability

that the difference in total cost of the HPP and the MRP approaches comes

from a distribution centered at zero is less than .0001 (the normalized Wilcoxon

statistics is greater than 7 standard deviations). The Statistic supports

our conclusion that the HPP methodology is superior to MRP for the cases

tested.

I
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5. CONCLUSIONS

The HP? system proposed in this paper represents a novel and svstem-

atic way to deal with complex production planning decisions faced in a

two-stage manufacturing environment. When tested in a relatively simple

setting, it provided encouraging results which lead us to believe that

the methodology has interesting potentials that could be exploited. In

particular, EPP was clearly superior when compared directly with an MRP

system.

Given the emerging emphasis on MRP as a planning tool to coordinate

fabrication and assembly operations, we feel that serious attention should

be focused on hierarchical production planning systems as a topic of future

research.
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APPENDIX 1: THE DATA BASE

Given the large number of possible input parameters, we varied those

we felt were most important to test and held constant the finished product

holding cost, annual demand, the product structure, and productivity. All

variables held constant were set to values representative of the actual

pencil manufacturer used as a base for our study.

We did not consider it necessary to vary both the finished product

and part holding costs, since it is their relative magnitudes that are of

primary importance for the purpose of our simulation.

The product/part structure we chose to use throughout the simulation

was discussed in section 4 and illustrated in Table 4.1.

Productivity was not varied in the tests simulated. The effects

generated by altering prcductivity are equivalent to those observed when

changing capacity. They influence the number of finished products and

parts that the system can produce at any moment in time, We felL IL un-

necessary to vary both parameters.

The measure used for capacity was the minimum fraction of demand

that can be satisfied with regular time. The capacity was varied between

202 and 100% for finished products and 20% and 250% for parts and was

measured in the following manner.

(a) Determine the period where the highest average demand per period

occurs (based on cumulative demand - see Figure Al). Let us call

this period N.

(b) At period N, compute the average demand per period, or:

Average Demand N (Cumulative Demand up to period N)/N
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Note: the point where the tar~qent
from the origin intersects !he
cumulative demand curve is
the point of highest average
demand per period

CUMULATIVE
DEMAND

0 N Period 13

Figure Al

(c) If capacity with no overtime is equal to Average DemandN, then

capacity is set to 100%. If capacity with the maximum allowable

overtime is equal to Average Demand, then capacity is set at 0%.

At all points between these two extremes, capacity is scaled

appropriately.

To define high setup costs, we relied upon the impact of those

costs on the length of the economic order quantities runs. We defined

a high (very high) setup cost to be one associated with a run length

greater than two (three) periods. Within the production environment in

which we conducted these tests, a three period setup cost was high.

Despite the assumption in the HPP appraoch that setup costs are

secondary, we tested points with high part and finished product setup

costs in an attempt to identify situations in which the MRP approach out-

performed our hierarchical model.

The forecast error, which was expressed as a percentage of demand,

was an increasing function of time. The following three scales for fore-

cast error magnitude were used:

-A
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0,

0.01 + 0.02t 1 3

and 0.05 + 0.02t1'

where t represents time. Given the magnitude of the forecast error, the

probability of an error being positive was defined as the positive bias

of the forecast and ranged from zero to one in the tests. Exponentially

increasing forecast errors correspond to what we have observed in practice.

Each demand pattern was treated as two connected opposite direction

sine waves (as represented in Figure A2). Changes in seasonal patterns

was controlled by modifying the coefficient of variation of the seasonal

factors ranging from 1.3 to 5.2.

SEASONAL

FACTOR

2Z.0 Wave 1

Wave 2

Period 1
Figure A2

Part holding costs were measured as a percentage of finished product

holding costs and varied between 30%. and 80%.

Overall, finished product and part capacity and setup costs, part

holding costs, forecast errors, and seasonalities assumed a variety of

realistic possible values in the tests simulated.
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